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Sequences

A sequence is defined as a function whose domain is the set of
positive integers.

Although a sequence is a function, it is common to represent
sequences by subscript notation rather than by the standard function
notation.

For instance, in the sequence

1, 2, 3, 4, . . . , n, . . .
↓ ↓ ↓ ↓ ↓ ↓ ↓ Sequence
a1, a2, a3, a4, . . . , an, . . .

1 is mapped onto a1, 2 is mapped onto a2, and so on.

The numbers a1, a2, a3, . . . , an, . . . are the The number an is the
nth term of the sequence, and the entire sequence is denoted by {an}.
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Example 1 (Listing the terms of a sequence)

a. The terms of the sequence {an} = {3 + (−1)n} are

3 + (−1)1, 3 + (−1)2, 3 + (−1)3, 3 + (−1)4, . . . =⇒ 2, 4, 2, 4, . . .

b. The terms of the sequence {bn} =
{

n
1−2n

}
are

1

1− 2 · 1
,

2

1− 2 · 2
,

3

1− 2 · 3
,

4

1− 2 · 4
, . . . =⇒ −1, −2

3
, −3

5
, −4

7
, . . .

c. The terms of the sequence {cn} =
{

n2

2n−1

}
are

12

21 − 1
,

22

22 − 1
,

32

23 − 1
,

42

24 − 1
, . . . =⇒ 1

1
,
4

3
,
9

7
,
16

15
, . . .

d. The terms of the recursively defined sequence {dn}, where d1 = 25
and dn+1 = dn − 5, are

25, 25− 5 = 20, 20− 5 = 15, 15− 5 = 10, . . .■
Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series January 28, 2022 5 / 159



Limit of a sequence

Sequences whose terms approach to limiting values, are said to For
instance, the sequence {1/2n}

1

2
,

1

4
,

1

8
,

1

16
,

1

32
, . . .

converges to 0, as indicated in the following definition.

Definition 9.1 (The limit of a sequence)

Let L be a real number. The limit of a sequence {an} is L, written as

lim
n→∞

an = L

if for each ε > 0, there exists M > 0 such that |an − L| < ε whenever
n > M. If the limit L of a sequence exists, then the sequence converges to
L. If the limit of a sequence does not exist, then the sequence diverges.
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Graphically, this definition says that eventually (for n > M and ε > 0)
the terms of a sequence that converges to L will lie within the band
between the lines y = L+ ε and y = L− ε as shown in Figure 1.

Figure 1: For n > M, the terms of the sequence all lie within ε units of L.

If a sequence {an} agrees with a function f at every positive integer,
and if f (x) approaches a limit L as x → ∞, the sequence must
converge to the same limit L.
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Theorem 9.1 (Limit of a sequence)

Let L be a real number. Let f be a function of a real variable such that

lim
x→∞

f (x) = L.

If {an} is a sequence such that f (n) = an for every positive integer n, then

lim
n→∞

an = L.
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Example 2 (Finding the limit of a sequence)

Find the limit of the sequence whose nth term is

an =

(
1 +

1

n

)n

.

You learned that limx→∞
(
1 + 1

x

)x
= e.

So, you can apply Theorem 9.1 to conclude that

lim
n→∞

an = lim
n→∞

(
1 +

1

n

)n

= e.

■
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Theorem 9.2 (Properties of limits of sequences)

Let limn→∞ an = L and limn→∞ bn = K .
1. Scalar multiple : limn→∞ can = cL, c is any real number

2. Sum or difference : limn→∞ (an ± bn) = L± K

3. Product : limn→∞(anbn) = LK

4. Quotient : limn→∞
an
bn

= L
K , bn ̸= 0 and K ̸= 0
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Example 3 (Determining convergence or divergence)

a. Because the sequence {an} = {3 + (−1)n} has terms

2, 4, 2, 4, . . .

that alternate between 2 and 4, the limit

lim
n→∞

an

does not exist. So, the sequence diverges.

b. For {bn} = { n
1−2n}, divide the numerator and denominator by n to

obtain

lim
n→∞

n

1− 2n
= lim

n→∞

1

(1/n)− 2
= −1

2

which implies that the sequence converges to −1
2 . ■
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Example 4 (Using L’Hôpital’s Rule to determine convergence)

Show that the sequence whose nth term is an = n2

2n−1 converges.

Consider the function of a real variable

f (x) =
x2

2x − 1
.

Applying L’Hôpital’s Rule twice produces

lim
x→∞

x2

2x − 1
= lim

x→∞

2x

(ln 2)2x
= lim

x→∞

2

(ln 2)22x
= 0.

Because f (n) = an all for every positive integer, you can apply
Theorem 9.1 to conclude that

lim
n→∞

n2

2n − 1
= 0.

So, the sequence converges to 0. ■
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The symbol n! (read “n factorial”) is used to simplify some of the
formulas. Let n be a positive integer; then n factorial is defined as
n! = 1 · 2 · 3 · 4 · · · (n − 1) · n.
As a special case, zero factorial is defined as 0! = 1.

From this definition, you can see that 1! = 1, 2! = 1 · 2 = 2,
3! = 1 · 2 · 3 = 6, and so on.

Factorial follow the same conventions for order of operations as
exponents. That is, 2n! = 2(n!) is different from (2n)!

Commonly used ordering If a > 0 and b > 1, then

ln n ≺ na ≺ bn ≺ n!

where an ≺ bn denotes that limn→∞
an
bn

= 0.
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Theorem 9.3 (Squeeze Theorem for sequences)

If
lim
n→∞

an = L = lim
n→∞

bn

and there exists an integer N such that an ≤ cn ≤ bn for all n > N, then

lim
n→∞

cn = L.

Example 5 (Using the Squeeze Theorem)

Show that the sequence {cn} =
{
(−1)n 1

n!

}
converges, and find its limit.

To apply the Squeeze Theorem, you must find two convergent
sequences that can be related to the given sequence.
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Two possibilities are an = −1/2n and bn = 1/2n, both of which
converge to 0. By comparing the term n! with 2n, you can see that,

n! = 1 · 2 · 3 · 4 · 5 · 6 · · · n = 24 · 5 · 6 · · · n︸ ︷︷ ︸
n−4 factors

(n ≥ 4)

and

2n = 2 · 2 · 2 · 2 · 2 · 2 · · · 2 = 16 · 2 · 2 · · · 2︸ ︷︷ ︸
n−4 factors

. (n ≥ 4)

This implies that for n ≥ 4, 2n < n!, and you have

−1

2n
≤ (−1)n

1

n!
≤ 1

2n
, n ≥ 4

as shown in Figure 2.
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Figure 2: For n ≥ 4, (−1)n/n! is squeezed between −1/2n and 1/2n.

So, by the Squeeze Theorem it follows that

lim
n→∞

(−1)n
1

n!
= 0.

■
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Theorem 9.4 (Absolute Value Theorem)

For the sequence {an}, if

lim
n→∞

|an| = 0 then lim
n→∞

an = 0.

Consider the two sequences {|an|} and {−|an|}.
Because both of these sequences converge to 0 and

−|an| ≤ an ≤ |an|

you can use the Squeeze Theorem to conclude that {an} converges to
0. □
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Pattern recognition for sequences

Sometimes the terms of a sequence are generated by some rule that
does not explicitly identify the nth term of the sequence.

In such cases, you may be required to discover a pattern in the
sequence and to describe the nth term.

Once the nth term has been specified, you can investigate the
convergence or divergence of the sequence.
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Example 6 (Finding the nth term of a sequence)

Find a sequence {an} whose first five terms are

2

1
,
4

3
,
8

5
,
16

7
,
32

9
, . . .

and then determine whether the particular sequence you have chosen
converges or diverges.

First, note that the numerators are successive powers of 2, and the
denominators form the sequence of positive odd integers.
By comparing an with n, you have the following pattern.

21

1
,
22

3
,
23

5
,
24

7
,
25

9
, . . . ,

2n

2n − 1

Using L’Hôpital’s Rule to evaluate the limit of f (x) = 2x

(2x−1) , you
obtain

lim
x→∞

2x

2x − 1
= lim

x→∞

2x(ln 2)

2
= ∞ =⇒ lim

n→∞

2n

2n − 1
= ∞.

So, the sequence diverges. ■
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The process of determining an nth term from the pattern observed in the
first several terms of a sequence is an example of inductive reasoning.

Example 7 (Finding the nth term of a sequence)

Determine an nth term for a sequence whose first five terms are

−2

1
,
8

2
, −26

6
,
80

24
, −242

120
, . . .

and then decide whether the sequence converges or diverges.

Note that the numerators are 1 less than 3n. So, you can reason that
the numerators are given by the rule 3n − 1.

Factoring the denominators produces

1 = 1 2 = 1 · 2 6 = 1 · 2 · 3 24 = 1 · 2 · 3 · 4 120 = 1 · 2 · 3 · 4 · 5

This suggests that the denominators are represented by n!.
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Finally, because the signs alternate, you can write the nth term as

an = (−1)n
(
3n − 1

n!

)
.

From the discussion about the growth of n!, it follows that

lim
n→∞

|an| = lim
n→∞

3n − 1

n!
= 0.

Applying Theorem 9.4, you can conclude that limn→∞ an = 0. So, the
sequence {an} converges to 0. ■
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Monotonic sequences and bounded sequences

Definition 9.2 (Monotonic sequence)

A sequence {an} is monotonic if its terms are nondecreasing

a1 ≤ a2 ≤ a3 ≤ · · · ≤ an ≤ · · ·

or if its terms are nonincreasing

a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ · · · .

Example 8 (Determining whether a sequence is monotonic)

Determine whether each sequence having the given nth term is monotonic.
a. an = 3 + (−1)n b. bn = 2n

1+n c. n2

2n−1

a. This sequence alternates between 2 and 4. So, it is not monotonic.
See Figure 3
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b. This sequence is monotonic because each successive term is larger
than its predecessor. To see this, compare the terms bn and bn+1.
[Note that, because n is positive, you can multiply each side of the
inequality by (1+n) and (2+n) without reversing the inequality sign.]

bn+1 − bn =
2(n + 1)

1 + (n + 1)
− 2n

1 + n
=

(1 + n)(2n + 2)− 2n(2 + n)

(n + 2)(n + 1)

=
(2n2 + 4n + 2)− (2n2 + 4n)

(n + 2)(n + 1)
=

2

(n + 2)(n + 1)
> 0

Starting with the final inequality, which is valid, you can reverse the
steps to conclude that the original inequality is also valid. See
Figure 3

c. This sequence is not monotonic, because the second term is larger
than the first term, and larger than the third. (Note that if you drop
the first term, the remaining sequence c2, c3, c4, . . . is monotonic.
See Figure 3) ■
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(a) Not monotonic. (b) Monotonic. (c) Not monotonic.

Figure 3: Graphically illustrates three sequences.
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Definition 9.3 (Bounded sequence)

1 A sequence {an} is bounded above if there is a real number M such
that an ≤ M for all n. The number M is called an upper bound of the
sequence.

2 A sequence an is bounded below if there is a real number N such that
N ≤ an for all n. The number N is called a lower bound of the
sequence.

3 A sequence {an} is bounded if it is bounded above and bounded
below.

One important property of the real numbers is that they are
complete. This means that there are no holes or gaps on the real
number line. (The set of rational numbers does not have the
completeness property.)
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The completeness axiom for real numbers can be used to conclude
that if a sequence has an upper bound, it must have a least upper
bound (an upper bound that is smaller than all other upper bounds
for the sequence).

For example, the least upper bound of the sequence
{an} = {n/(n + 1)},

1

2
,
2

3
,
3

4
,
4

5
, . . . ,

n

n + 1
, . . .

is 1.

Theorem 9.5 (Bounded monotonic sequences)

If a sequence {an} is bounded and monotonic, then it converges.
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Example 9 (Bounded and monotonic sequences)

Determine whether or not the following sequences bounded or convergent.

a. {an} =
{
1
n

}
b. {bn} =

{
n2

(n+1)

}
c. {cn} = {(−1)n}

a. The sequence {an} = {1/n} is both bounded and monotonic and so,
by Theorem 9.5, must converge.

b. The divergent sequence {bn} =
{
n2/(n + 1)

}
is monotonic, but not

bounded. (It is bounded below.)

c. The divergent sequence {cn} = {(−1)n} is bounded, but not
monotonic. ■
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Infinite series

One important application of infinite sequences is in representing
infinite summations.

Informally, if {an} is an infinite sequence, then

∞∑
n=1

an = a1 + a2 + a3 + · · ·+ an + · · · Infinite series

is an infinite series (or simply a series).

The numbers a1, a2, a3, are the terms of the series.

For some series it is convenient to begin the index at n = 0 (or some
other integer).

As a typesetting convention, it is common to represent an infinite
series as simply

∑
an.

In such cases, the starting value for the index must be taken from the
context of the statement.
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To find the sum of an infinite series, consider the following

S1 = a1 S2 = a1 + a2 S3 = a1 + a2 + a3

S4 = a1 + a2 + a3 + a4 S5 = a1 + a2 + a3 + a4 + a5 · · ·
Sn = a1 + a2 + a3 + · · ·+ an

If this sequence of partial sums converges, the series is said to
converge.
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Definition 9.4 (Convergent and divergent series)

For the infinite series
∑∞

n=1 an the nth partial sum is given by

Sn = a1 + a2 + · · ·+ an.

If the sequence of partial sums {Sn} converges to S , then the series∑∞
n=1 an converges. The limit S is called the sum of the series.

S = a1 + a2 + · · ·+ an + · · · S =
∞∑
n=1

an

If {Sn} diverges, then the series diverges.
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Example 1 (Convergent and divergent series)

a. The series
∞∑
n=1

1

2n
=

1

2
+

1

4
+

1

8
+

1

16
+ · · ·

has the following partial sums.

S1 =
1

2

S2 =
1

2
+

1

4
=

3

4

S3 =
1

2
+

1

4
+

1

8
=

7

8
· · ·

Sn =
1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
=

2n − 1

2n
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Because

lim
n→∞

2n − 1

2n
= 1

it follow that the series converges and its sum is 1.

b. The nth partial sum of the series

∞∑
n=1

(
1

n
− 1

n + 1

)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·

is given by

Sn = 1− 1

n + 1
.

Because the limit of Sn is 1, the series converges and its sum is 1.

c. The series
∞∑
n=1

1 = 1 + 1 + 1 + 1 + · · ·

diverges because Sn = n and the sequence of partial sums diverges. ■
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The series
∑∞

n=1

(
1
n − 1

n+1

)
=
(
1
1 − 1

2

)
+
(
1
2 − 1

3

)
+
(
1
3 − 1

4

)
+ · · · is

a telescoping series of the form

(b1 − b2) + (b2 − b3) + (b3 − b4) + (b4 − b5) + · · ·

Note that b2 is canceled by the second term, b3 is canceled by the
third term, and so on.

Because the nth partial sum of this series is

Sn = b1 − bn+1

it follows that a telescoping series will converge if and only if bn
approaches a finite number as n → ∞.

Moreover, if the series converges, its sum is

S = b1 − lim
n→∞

bn+1.
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Example 2 (Writing a series in telescoping form)

Find the sum of the series
∑∞

n=1
2

4n2−1
.

Using partial fractions, you can write

an =
2

4n2 − 1
=

2

(2n − 1)(2n + 1)
=

1

2n − 1
− 1

2n + 1
.

From this telescoping form, you can see that the nth partial sum is

Sn =

(
1

1
− 1

3

)
+

(
1

3
− 1

5

)
+· · ·+

(
1

2n − 1
− 1

2n + 1

)
= 1− 1

2n + 1
.

So, the series converges and its sum is 1. That is,

∞∑
n=1

2

4n2 − 1
= lim

n→∞
Sn = lim

n→∞

(
1− 1

2n + 1

)
= 1.

■
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Geometric series

The series
∑∞

n=1
1
2n = 1

2 + 1
4 + 1

8 + 1
16 + · · · is a geometric series.

In general, the series given by

∞∑
n=0

arn = a+ ar + ar2 + · · ·+ arn + · · · , a ̸= 0

is a geometric series with ratio r .

Theorem 9.6 (Convergence of a geometric series)

A geometric series with ratio r diverges if |r | ≥ 1. If 0 < |r | < 1, then the
series converges to the sum

∞∑
n=0

arn =
a

1− r
, 0 < |r | < 1.
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Example 3 (Convergent and divergent geometric series)

a. The geometric series

∞∑
n=0

3

2n
=

∞∑
n=0

3

(
1

2

)n

= 3(1) + 3

(
1

2

)
+ 3

(
1

2

)2

+ · · ·

has a ratio of r = 1
2 with a = 3. Because 0 < |r | < 1, the series

converges and its sum is

S =
a

1− r
=

3

1− (1/2)
= 6.

b. The geometric series

∞∑
n=0

(
3

2

)n

= 1 +
3

2
+

9

4
+

27

8
+ · · ·

has a ratio r = 3
2 . Because |r | ≥ 1, the series diverges. ■
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Example 4 (A geometric series for a repeating decimal)

Use a geometric series to write 0.08 as the ratio of two integers.

For the repeating decimal 0.08, you can write

0.080808 . . . =
8

102
+

8

104
+

8

106
+

8

108
+ · · · =

∞∑
n=0

(
8

102

)(
1

102

)n

.

For this series, you have a = 8/102 and r = 1/102. So,

0.080808 . . . =
a

1− r
=

8/102

1− (1/102)
=

8

99
.

Try dividing 8 by 99 on a calculator to see that it produces 0.08. ■
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Theorem 9.7 (Properties of infinite series)

Let
∑

an and
∑

bn be convergent series, and let A, B, and c be real
numbers. If

∑∞
n=1 an = A and

∑∞
n=1 bn = B, then the following series

converge to the indicated sums.

1
∑∞

n=1 can = cA

2
∑∞

n=1(an + bn) = A+ B

3
∑∞

n=1(an − bn) = A− B
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nth-term test for a convergent series

Theorem 9.8 (Limit of the nth term of a convergent series)

If
∑∞

n=1 an is convergent, then limn→∞ an = 0.

Assume that
∞∑
n=1

an = lim
n→∞

Sn = L.

Then, because Sn = Sn−1 + an and

lim
n→∞

Sn = lim
n→∞

Sn−1 = L.

It follows that

L = lim
n→∞

Sn = lim
n→∞

(Sn−1 + an) = lim
n→∞

Sn−1 + lim
n→∞

an

= L+ lim
n→∞

an

which implies that {an} converges to 0. □
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The contrapositive of Theorem 9.8 provides a useful test for
divergence.

This nth-Term Test for Divergence states that if the limit of the nth
term of a series does not converge to 0, the series must diverge.

Theorem 9.9 (nth-term test for divergent)

If limn→∞ an ̸= 0, then
∑∞

n=1 an diverges.

Example 5 (Using the nth-term test for divergent)
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a. For the series
∑∞

n=0 2
n, you have

lim
n→∞

2n = ∞.

So the limit of the nth term is not 0, and the series diverges.

b. For the series
∑∞

n=1
n!

2n!+1 , you have

lim
n→∞

n!

2n! + 1
=

1

2
.

So, the limit of the nth term is not 0, and the series diverges.

c. For the series
∑∞

n=1
1
n , you have

lim
n→∞

1

n
= 0.

Because the limit of the nth term is 0, the nth-term test for
divergence does not apply and you can draw no conclusions about
convergence or divergence. ■
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The Integral Test

Theorem 9.10 (The Integral Test)

If f is positive, continuous, and decreasing for x ≥ 1 and an = f (n), then

∞∑
n=1

an and

∫ ∞

1
f (x) dx

either both converge or both diverge.

Example 1 (Using the Integral Test)

Apply the Integral Test to the series
∑∞

n=1
n

n2+1
.

The function f (x) = x
(x2+1)

is positive and continuous for x ≥ 1.
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To determine whether f is decreasing, find the derivative.

f ′(x) =
(x2 + 1)(1)− x(2x)

(x2 + 1)2
=

−x2 + 1

(x2 + 1)2

So, f ′(x) < 0 for x > 1 and it follows that f satisfies the conditions
for the Integral Test.

You can integrate to obtain∫ ∞

1

x

x2 + 1
dx =

1

2

∫ ∞

1

2x

x2 + 1
dx

=
1

2
lim
b→∞

∫ b

1

2x

x2 + 1
dx =

1

2
lim
b→∞

[
ln(x2 + 1)

]b
1

=
1

2
lim
b→∞

[
ln(b2 + 1)− ln 2

]
= ∞. ■
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Example 2 (Using the Integral Test)

Apply the Integral Test to the series
∑∞

n=1
1

n2+1
.

Because f (x) = 1/(x2 + 1) satisfies the conditions for the Integral
Test (check this), you can integrate to obtain∫ ∞

1

1

x2 + 1
dx = lim

b→∞

∫ b

1

1

x2 + 1
dx = lim

b→∞
[arctan x ]b1

= lim
b→∞

(arctan b − arctan 1) =
π

2
− π

4
=

π

4
.

So, the series converges. ■

Figure 4: Because the improper integral converges, the infinite series also
converges.
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p-series and harmonic series

A second type of series has a simple arithmetic test for convergence
or divergence.

A series of the form

∞∑
n=1

1

np
=

1

1p
+

1

2p
+

1

3p
+ · · ·

is a p-series, where p is a positive constant.

For p = 1, the series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ · · ·

is the harmonic series.

A general harmonic series is of the form
∑ 1

(an+b) .

In music, strings of the same material, diameter, and tension, whose
lengths form a harmonic series, produce harmonic tones.
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Euler-Mascheroni constant γ (C )

γ = lim
n→∞

(
n∑

k=1

1

k
− ln n

)
≈ 0.5772156649

is a mathematical constant recurring in analysis and number theory.

Riemann zeta function ζ(s)

ζ(s) =
∞∑
n=1

1

ns

is a function of a complex variable s that analytically continues the sum of
the infinite series which converges when the real part of s is greater than 1.
The Riemann zeta function plays a pivotal role in analytic number theory
and has applications in physics, probability theory, and applied statistics.
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Theorem 9.11 (Convergence of p series)

The p-series
∞∑
n=1

1

np
=

1

1p
+

1

2p
+

1

3p
+

1

4p
+ · · ·

1. converges if p > 1, and 2. diverges if 0 < p ≤ 1.

The proof follows from the Integral Test and from Theorem 8.7,
which states that ∫ ∞

1

1

xp
dx

converges if p > 1 and diverges if 0 < p ≤ 1. □
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Example 3 (Convergent and divergent p series)

Discuss the convergence or divergence of
a. the harmonic series and b. the p-series with p = 2.

a. From Theorem 9.11, it follows that the harmonic series

∞∑
n=1

1

n
=

1

1
+

1

2
+

1

3
+ · · ·

diverges.

b. From Theorem 9.11, it follows that the p-series

∞∑
n=1

1

n2
=

1

12
+

1

22
+

1

32
+ · · ·

converges. ■
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Example 4 (Testing a series for convergence)

Determine whether the following series converges or diverges.

∞∑
n=2

1

n ln n

This series is similar to the divergent harmonic series.

If its terms were larger than those of the harmonic series, you would
expect it to diverge.

The function f (x) = 1/(x ln x) is positive and continuous for x ≥ 2.

To determine whether f is decreasing, first rewrite f as
f (x) = (x ln x)−1 and then find its derivative.

f ′(x) = (−1)(x ln x)−2(1 + ln x) = − 1 + ln x

x2(ln x)2
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So, f ′(x) < 0 for x > 2 and it follows that f satisfies the conditions
for the Integral Test.∫ ∞

2

1

x ln x
dx =

∫ ∞

2

1/x

ln x
dx = lim

b→∞
[ln(ln x)]b2

= lim
b→∞

[ln(ln b)− ln(ln 2)] = ∞

The series diverges. ■
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Direct comparison test

For the convergence tests the terms of the series have to be fairly
simple and the series must have special characteristics in order for the
convergence tests to be applied.

A slight deviation from these special characteristics can make a test
nonapplicable.

For example, in the following pairs, the second series cannot be tested
by the same convergence test as the first series even though it is
similar to the first.

1
∑∞

n=0
1
2n is geometric, but

∑∞
n=0

n
2n is not.

2
∑∞

n=1
1
n3 is a p-series, but

∑∞
n=1

1
n3+1 is not.

3 an = n
(n2+3)2 is easily integrated, but bn = n2

(n2+3)2 .
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Theorem 9.12 (Direct Comparison Test)

Let 0 < an ≤ bn for all n.
1. If

∑∞
n=1 bn converges, then

∑∞
n=1 an converges.

2. If
∑∞

n=1 an diverges, then
∑∞

n=1 bn diverges.

To prove the first property, let L =
∑∞

n=1 bn and let

Sn = a1 + a2 + · · ·+ an.

Because 0 < an ≤ bn, the sequence S1, S2, S3, . . . is nondecreasing
and bounded above by L; so, it must converge. Because

lim
n→∞

Sn =
∞∑
n=1

an

it follows that
∑

an converges. The second property is logically
equivalent to the first. □
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Example 1 (Using the Direct Comparison Test)

Determine the convergence or divergence of
∑∞

n=1
1

2+3n .

This series resembles

∞∑
n=1

1

3n
. Convergent geometric series

Term-by-term comparison yields

an =
1

2 + 3n
<

1

3n
= bn, n ≥ 1.

So, by the Direct Comparison Test, the series converges. ■
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Example 2 (Using the Direct Comparison Test)

Determine the convergence or divergence of
∑∞

n=1
1

2+
√
n
.

This series resembles
∞∑
n=1

1

n1/2
. Divergent p-series

Term-by-term comparison yields

1

2 +
√
n
≤ 1√

n
, n ≥ 1

which does not meet the requirements for divergence. (Remember
that if term-by-term comparison reveals a series that is smaller than a
divergent series, the Direct Comparison Test tells you nothing.)
Still expecting the series to diverge, you can compare the given series
with

∞∑
n=1

1

n
. Divergent harmonic series
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In this case, term-by-term comparison yields

an =
1

n
≤ 1

2 +
√
n
= bn, n ≥ 4

and, by the Direct Comparison Test, the given series diverges. ■

Remember that both parts of the Direct Comparison Test require that
0 < an ≤ bn. Informally, the test says the following about the two series
with nonnegative terms.

1. If the “larger” series converges, the “smaller” series must also
converge.

2. If the “smaller” series diverges, the “larger” series must also diverge.

Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series January 28, 2022 58 / 159



Limit comparison test

Often a given series closely resembles a p-series or a geometric series,
yet you cannot establish the term-by-term comparison necessary to
apply the Direct Comparison Test. Under these circumstances you
may be able to apply a second comparison test, called the Limit
Comparison Test.

Theorem 9.13 (Limit Comparison Test)

Suppose that an > 0, bn > 0, and

lim
n→∞

(
an
bn

)
= L

where L is finite and positive. Then the two series
∑

an and
∑

bn either
both converge both diverge.
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Because an > 0, bn > 0, and

lim
n→∞

(
an
bn

)
= L

there exists N > 0 such that

0 <
an
bn

< L+ 1, for n ≥ N.

This implies that
0 < an < (L+ 1)bn.

So, by the Direct Comparison Test, the convergence of
∑

bn implies
the convergence

∑
an and the divergence of

∑
an implies the

divergence
∑

bn.

Similarly, the fact that

lim
n→∞

(
bn
an

)
=

1

L

can be used to show that the convergence of
∑

an all implies the
convergence of

∑
bn and the divergence of

∑
bn implies the

divergence
∑

an. □
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Example 3 (Using the Limit Comparison Test)

Show that the following general harmonic series diverges.

∞∑
n=1

1

an + b
, a > 0, b > 0

By comparison with
∑∞

n=1
1
n (divergent harmonic series), you have

lim
n→∞

1/(an + b)

1/n
= lim

n→∞

n

an + b
=

1

a
.

Because this limit is greater than 0, you can conclude from the Limit
Comparison Test that the given series diverges. ■
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The Limit Comparison Test works well for comparing a ”messy”
algebraic series with a p-series.

Given Series Comparison Series Conclusion∑∞
n=1

1
3n2−4n+5

∑∞
n=1

1
n2

Both series converge.∑∞
n=1

1√
3n−2

∑∞
n=1

1√
n

Both series diverge.∑∞
n=1

n2−10
4n5+n3

∑∞
n=1

n2

n5
=
∑∞

n=1
1
n3

Both series converge.

When choosing a series for comparison, you can disregard all but the
highest powers of n in both the numerator and the denominator.
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Example 4 (Using the Limit Comparison Test)

Determine the convergence or divergence of
∑∞

n=1

√
n

n2+1
.

Disregarding all but the highest powers of n in the numerator and the
denominator, you can compare the series with

∞∑
n=1

√
n

n2
=

∞∑
n=1

1

n3/2
. Convergent p-series

Because

lim
n→∞

an
bn

= lim
n→∞

( √
n

n2 + 1

)(
n3/2

1

)
= lim

n→∞

n2

n2 + 1
= 1

you can conclude by the Limit Comparison Test that the given series
converges. ■
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Example 5 (Using the Limit Comparison Test)

Determine the convergence or divergence of
∑∞

n=1
n2n

4n3+1
.

A reasonable comparison would be with the series

∞∑
n=1

2n

n2
. Divergent series

Note that this series diverges by the nth-Term Test. From the limit

lim
n→∞

an
bn

= lim
n→∞

(
n2n

4n3 + 1

)(
n2

2n

)
= lim

n→∞

1

4 + (1/n3)
=

1

4

you can conclude that the given series diverges. ■
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Alternating series

The simplest series that contain both positive and negative terms is
an alternating series, whose terms alternate in sign. For example, the
geometric series

∞∑
n=0

(
−1

2

)n

=
∞∑
n=0

(−1)n
1

2n
= 1− 1

2
+

1

4
− 1

8
+

1

16
− · · ·

is an alternating geometric series with r = −1/2.

Alternating series occur in two ways: either the odd terms are
negative or the even terms are negative.
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Theorem 9.14 (Alternating Series Test)

Let an > 0. The alternating series

∞∑
n=1

(−1)nan and
∞∑
n=1

(−1)n+1an

converge if the following two conditions are met.
1. limn→∞ an = 0 2. an+1 ≤ an, for all n

Remark

The second condition in the Alternating Series Test can be modified to
require only that 0 < an+1 ≤ an for all n greater than some integer N.
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Example 1 (Using the Alternating Comparison Test)

Determine the convergence or divergence of
∑∞

n=1(−1)n+1 1
n .

Note that limn→∞ an = limn→∞
1
n = 0. So, the first condition of

Theorem 9.14 is satisfied.

Also note that the second condition of Theorem 9.14 is satisfied
because

an+1 =
1

n + 1
≤ 1

n
= an

for all n. So, applying the Alternating Series Test, you can conclude
that the series converges. ■
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Example 2 (Using the Alternating Series Test)

Determine the convergence or divergence of
∑∞

n=1
n

(−2)n−1 .

To apply the Alternating Series Test, note that, for n ≥ 1,

1

2
≤ n

n + 1

2n−1

2n
≤ n

n + 1
(n + 1)2n−1 ≤ n2n

n + 1

2n
≤ n

2n−1
.

So, an+1 = (n + 1)2n ≤ n/2n−1 = an for all n.

Furthermore, by L’Hôpital’s Rule,

lim
x→∞

x

2x−1
= lim

x→∞

1

2x−1(ln 2)
= 0 =⇒ lim

n→∞

n

2n−1
= 0.

Therefore, by the Alternating Series Test, the series converges. ■
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Example 3 (When the Alternating Series Test does not apply)

a. The alternating series

∞∑
n=1

(−1)n+1(n + 1)

n
=

2

1
− 3

2
+

4

3
− 5

4
+

6

5
− · · ·

passes the second condition of the Alternating Series Test because
an+1 ≤ an for all n.

You cannot apply the Alternating Series Test, however, because the
series does not pass the first condition (limn→∞ an = 1 ̸= 0). In fact,
the series diverges.

b. The alternating series

2

1
− 1

1
+

2

2
− 1

2
+

2

3
− 1

3
+

2

4
− 1

4
+ · · ·

passes the first condition because all approaches 0 as n → ∞.
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You cannot apply the Alternating Series Test, however, because the
series does not pass the second condition.

To conclude that the series diverges, you can argue that S2N equals
the Nth partial sum of the divergent harmonic series.

This implies that the sequence of partial sums diverges. So, the series
diverges. ■
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Alternating series remainder

For a convergent alternating series, the partial sum SN can be a
useful approximation for the sum S of the series. The error involved
in using S ≈ SN is the remainder RN = S − SN .

Theorem 9.15 (Alternating Series Remainder)

If a convergent alternating series satisfies the condition an+1 ≤ an, then
the absolute value of the remainder RN involved in approximating the sum
S by SN is less than (or equal to) the first neglected term. That is,

|S − SN | = |RN | ≤ aN+1.
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Example 4 (Approximating the sum of an alternating series)

Approximate the sum of the following series by its first six terms.

1− e−1 =
∞∑
n=1

(−1)n+1

(
1

n!

)
=

1

1!
− 1

2!
+

1

3!
− 1

4!
+

1

5!
− 1

6!
+ · · ·

The series converges by the Alternating Series Test because

1

(n + 1)!
≤ 1

n!
and lim

n→∞

1

n!
= 0.

The sum of the first six terms is

S6 = 1− 1

2
+

1

6
− 1

24
+

1

120
− 1

720
=

91

144
≈ 0.63194

and, by the Alternating Series Remainder, you have

|S − S6| = |R6| ≤ a7 =
1

5040
≈ 0.0002.

So, the sum S lies between 0.63194− 0.0002 and 0.63194 + 0.0002,

0.63174 ≤ S ≤ 0.63214.

■
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Absolute and conditional convergence

Occasionally, a series may have both positive and negative terms and
not be an alternating series. For instance, the series

∞∑
n=1

sin n

n2
=

sin 1

1
+

sin 2

4
+

sin 3

9
+ · · ·

has both positive and negative terms, yet it is not an alternating
series.

One way to obtain some information about the convergence of this
series is to investigate the convergence of the series

∞∑
n=1

∣∣∣∣sin nn2

∣∣∣∣ .
By direct comparison, you have | sin n| ≤ 1 for all n, so∣∣∣∣sin nn2

∣∣∣∣ ≤ 1

n2
, n ≥ 1.
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Therefore, by the Direct Comparison Test, the series
∑∣∣ sin n

n2

∣∣
converges.

Theorem 9.16 (Absolute convergence)

If the series
∑

|an| converges, then the series
∑

an also converges.

The converse of Theorem 9.16 is not true. For instance, the
alternating harmonic series

∞∑
n=1

(−1)n+1

n
=

1

1
− 1

2
+

1

3
− 1

4
+ · · ·

converges by the Alternating Series Test. Yet the harmonic series
diverges. This type of convergence is called conditional.
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Definition 9.5 (Absolute and conditional convergence)

1
∑

an is absolutely convergent if
∑

|an| converges.
2
∑

an is conditionally convergent if
∑

an converges but
∑

|an|
diverges.

Example 6 (Absolute and conditional convergence)

Determine whether each of the series is convergent or divergent. Classify
any convergent series as absolutely or conditionally convergent.
a.
∑∞

n=0
(−1)nn!

2n = 0!
20

− 1!
21

+ 2!
22

− 3!
23

+ · · ·
b.
∑∞

n=1
(−1)n√

n
= − 1√

1
+ 1√

2
− 1√

3
+ 1√

4
− · · ·

a. By the nth-term test for divergence, you can conclude that this series
diverges.
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b. The given series can be shown to be convergent by the Alternating
Series Test. Moreover, because the p-series

∞∑
n=1

∣∣∣∣(−1)n√
n

∣∣∣∣ = 1√
1
+

1√
2
+

1√
3
+

1√
4
+ · · ·

diverges, the given series is conditionally convergent. ■

Example 7 (Absolute and conditional convergence)

Determine whether each of the series is convergent or divergent. Classify
any convergent series as absolutely or conditionally convergent.

a.
∑∞

n=1
(−1)n(n+1)/2

3n = −1
3 − 1

9 + 1
27 + 1

81 − · · ·
b.
∑∞

n=1
(−1)n

ln(n+1) = − 1
ln 2 + 1

ln 3 − 1
ln 4 + 1

ln 5 − · · ·
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a. This is not an alternating series. However, because

∞∑
n=1

∣∣∣∣∣(−1)n(n+1)/2

3n

∣∣∣∣∣ =
∞∑
n=1

1

3n

is a convergent geometric series, you can apply Theorem 9.16 to
conclude that the given series is absolutely convergent (and therefore
convergent).

b. In this case, the Alternating Series Test indicates that the given series
converges. However, the series

∞∑
n=1

∣∣∣∣ (−1)n

ln(n + 1)

∣∣∣∣ = 1

ln 2
+

1

ln 3
+

1

ln 4
+ · · ·

diverges by direct comparison with the terms of the harmonic series.
Therefore, the given series is conditionally convergent. ■
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Rearrangement of series

A finite sum such as (1 + 3− 2 + 5− 4) can be rearranged without
changing the value of the sum. This is not necessarily true of an
infinite series—it depends on whether the series is absolutely
convergent (every rearrangement has the same sum) or conditionally
convergent.

Example 8 (Rearrangement of a series)

The alternating harmonic series converges to ln 2. That is,

∞∑
n=1

(−1)n+1 1

n
=

1

1
− 1

2
+

1

3
− 1

4
+ · · · = ln 2.

Rearrange the series to produce a different sum.
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Consider the following rearrangement.

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+

1

7
− 1

14
− · · ·

=

(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+

(
1

7
− 1

14

)
− · · ·

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+

1

14
− · · ·

=
1

2

(
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− · · ·

)
=

1

2
(ln 2)

By rearranging the terms, you obtain a sum that is half the original
sum. ■
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The Ratio Test

This section begins with a test for absolute convergence—the
Ratio Test.

Theorem 9.17 (Ratio Test)

Let
∑

an be a series with nonzero terms.

1
∑

an converges absolutely if limn→∞

∣∣∣an+1

an

∣∣∣ < 1.

2
∑

an diverges if limn→∞

∣∣∣an+1

an

∣∣∣ > 1 or limn→∞

∣∣∣an+1

an

∣∣∣ = ∞.

3 The Ratio Test is inconclusive if limn→∞

∣∣∣an+1

an

∣∣∣ = 1.

Remark

Although the Ratio Test is not a cure for all ills related to testing for
convergence, it is particularly useful for series that converge rapidly. Series
involving factorials or exponentials are frequently of this type.
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Example 1 (Using the Ratio Test)

Determine the convergence or divergence of
∑∞

n=0
2n

n! .

Because an = 2n/n!, you can write the following.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

[
2n+1

(n + 1)!
÷ 2n

n!

]
= lim

n→∞

[
2n+1

(n + 1)!
· n!
2n

]
= lim

n→∞

2

n + 1
= 0 < 1

This series converges because the limit of |an+1/an| is less than 1. ■
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Example 2 (Using the Ratio Test)

Determine whether each series converges or diverges.
a.
∑∞

n=0
n22n+1

3n b.
∑∞

n=1
nn

n!

a. This series converges because the limit of |an+1/an| is less than 1.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

[
(n + 1)2

(
2n+2

3n+1

)(
3n

n22n+1

)]
= lim

n→∞

2(n + 1)2

3n2
=

2

3
< 1

b. This series diverges because the limit of |an+1/an| is greater than 1.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

[
(n + 1)n+1

(n + 1)!

(
n!

nn

)]
= lim

n→∞

[
(n + 1)n+1

n + 1

(
1

nn

)]
= lim

n→∞

(n + 1)n

nn
= lim

n→∞

(
1 +

1

n

)n

= e > 1 ■
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Example 3 (A failure of the Ratio Test)

Determine the convergence or divergence of
∑∞

n=1(−1)n
√
n

n+1 .

The limit of |an+1/an| is equal to 1.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

[(√
n + 1

n + 2

)(
n + 1√

n

)]
= lim

n→∞

[√
n + 1

n

(
n + 1

n + 2

)]
=

√
1(1) = 1

So, the Ratio Test is inconclusive.

To determine whether the series converges, you need to try a different
test.

In this case, you can apply the Alternating Series Test. To show that
an+1 ≤ an, let

f (x) =

√
x

x + 1
.
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Then the derivative is

f ′(x) =
−x + 1

2
√
x(x + 1)2

.

Because the derivative is negative for x > 1, you know that f is a
decreasing function.

Also, by L’Hôpital’s Rule,

lim
x→∞

√
x

x + 1
= lim

x→∞

1/
(
2
√
x
)

1
= lim

x→∞

1

2
√
x
= 0.

Therefore, by the Alternating Series Test, the series converges. ■
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The Root Test

The next test for convergence or divergence of series works especially
well for series involving nth powers.

Theorem 9.18 (Root Test)

Let
∑

an be a series.

1
∑

an converges absolutely if limn→∞
n
√
|an| < 1.

2
∑

an diverges if limn→∞
n
√

|an| > 1 or limn→∞
n
√
|an| = ∞.

3 The Root Test is inconclusive if limn→∞
n
√
|an| = 1.

Remark

The Root Test is always inconclusive for any p-series.
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Example 4 (Using the Root Test)

Determine the convergence or divergence of
∑∞

n=1
e2n

nn .

You can apply the Root Test as follows.

lim
n→∞

n
√
|an| = lim

n→∞
n

√
e2n

nn
= lim

n→∞

e2n/n

nn/n
= lim

n→∞

e2

n
= 0 < 1

Because this limit is less than 1, you can conclude that the series
converges absolutely (and therefore converges). ■

Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series January 28, 2022 88 / 159



Strategies for testing series

Does the nth term approach 0? If not, the series diverges.

Is the series one of the special types—geometric, p-series, telescoping,
or alternating?

Can the Integral Test, the Root Test, or the Ratio Test be applied?

Can the series be compared favorably to one of the special types?
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Example 5 (Applying the strategies for testing series)

Determine the convergence or divergence of

a.
∑∞

n=1
n+1
3n+1 b.

∑∞
n=1

(
π
6

)n
c.
∑∞

n=1 ne
−n2

d.
∑∞

n=1
1

3n+1 e.
∑∞

n=1(−1)n 3
4n+1 f.

∑∞
n=1

n!
10n

g.
∑∞

n=1

(
n+1
2n+1

)n
a. For this series, the limit of the nth term is not 0 (an → 1/3 as

n → ∞). So, by the nth-Term Test, the series diverges.

b. This series is geometric. Moreover, because the ratio r = π/6 of the
terms is less than 1 in absolute value, you can conclude that the
series converges.

c. Because the function f (x) = xe−x2 is easily integrated, you can use
the Integral Test to conclude that the series converges.

d. The nth term of this series can be compared to the nth term of the
harmonic series. After using the Limit Comparison Test, you can
conclude that the series diverges.
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e. This is an alternating series whose nth term approaches 0. Because
an+1 ≤ an. you can use the Alternating Series Test to conclude that
the series converges.

f. The nth term of this series involves a factorial, which indicates that
the Ratio Test may work well. After applying the Ratio Test, you can
conclude that the series diverges.

g. The nth term of this series involves a variable that is raised to the nth
power, which indicates that the Root Test may work well. After
applying the Root Test, you can conclude that the series converges. ■
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Polynomial approximations of elementary functions

To find a polynomial function P that approximates another function
f , begin by choosing a number c in the domain of f at which f and
P have the same value. That is,

P(c) = f (c). Graphs of f and P pass through (c, f (c))

The approximating polynomial is said to be expanded about c or
centered at c .

Geometrically, the requirement that P(c) = f (c) means that the
graph of P passes through the point (c , f (c)). Of course, there are
many polynomials whose graphs pass through the point (c , f (c)).
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To find a polynomial whose graph resembles the graph of f near this
point. One way to do this is to impose the additional requirement
that the slope of the polynomial function be the same as the slope of
the graph of f at the point (c, f (c)).

P ′(c) = f ′(c). Graphs of f and P have the same at (c , f (c))

With these two requirements, you can obtain a simple linear
approximation of f , as shown in Figure 5.

Figure 5: Near (c , f (c)), the graph of P can be used to approximate the graph of
f .
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Example 1 (First-degree polynomial approximation of f (x) = ex)

For the function f (x) = ex , find a first-degree polynomial function

P1(x) = a0 + a1x

whose value and slope agree with the value and slope of f at x = 0.

Because f (x) = ex and f ′(x) = ex , the value and the slope of f , at
x = 0, are given by

f (0) = e0 = 1 and f ′(0) = e0 = 1.

Because P1(x) = a0 + a1x , you can use the condition that
P1(0) = f (0) to conclude that a0 = 1.

Moreover, because P ′
1(x) = a1, you can use the condition that

P ′
1(0) = f ′(0) to conclude that a1 = 1.

Therefore, P1(x) = 1 + x . Figure 6 shows the graphs of
P1(x) = 1 + x and f (x) = ex . ■
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Figure 6: P1(x) = 1+ x is the first-degree polynomial approximation of f (x) = ex .
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Example 2 (Third-degree polynomial approximation of f (x) = ex)

Construct a table comparing the values of the polynomial

P3(x) = 1 + x +
1

2
x2 +

1

3!
x3

with f (x) = ex for several values of x near 0.

Using a calculator or a computer, you can obtain the results shown in
the table.

Note that for x = 0, the two functions have the same value, but that
as x moves farther away from 0, the accuracy of the approximating
polynomial P3(x) decreases. ■

x −1.0 −0.2 −0.1 0 0.1 0.2 1.0

ex 0.3679 0.81873 0.904837 1 1.105171 1.22140 2.7183

P3(x) 0.3333 0.81867 0.904833 1 1.105167 1.22133 2.6667
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Taylor and Maclaurin polynomials

The polynomial approximation of f (x) = ex is expanded about c = 0.
For expansions about an arbitrary value of c , it is convenient to write
the polynomial in the form

Pn(x) = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + · · ·+ an(x − c)n.

In this form, repeated differentiation produces

P ′
n(x) = a1 + 2a2(x − c) + 3a3(x − c)2 + · · ·+ nan(x − c)n−1

P ′′
n (x) = 2a2 + 2(3a3)(x − c) + · · ·+ n(n − 1)an(x − c)n−2

P ′′′
n (x) = 2(3a3) + · · ·+ n(n − 1)(n − 2)an(x − c)n−3

...

P
(n)
n (x) = n(n − 1)(n − 2) · · · (2)(1)an.
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Letting x = c , you then obtain

Pn(c) = a0, P ′
n(c) = a1, P ′′

n (c) = 2a2, . . . , P
(n)
n (c) = n!an.

and because the values of f and its first n derivatives must agree with
the values of Pn and its first n derivatives at x = c , it follows that

f (c) = a0, f ′(c) = a1,
f ′′(c)

2!
= a2, . . . ,

f (n)(c)

n!
= an.

With these coefficients, you can obtain the following definition of
Taylor polynomials, named after the English mathematician Taylor,
Brook (1685-1731), and
Maclaurin polynomials, named after the English mathematician
Maclaurin, Colin (1698-1746).
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Definition 9.6 (Taylor polynomial and Maclaurin polynomial)

If f has n derivatives at c , then the polynomial

Pn(x) = f (c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n

is called the nth Taylor polynomial for f at c . If c = 0, then

Pn(x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f (n)(0)

n!
xn

is also called the nth Maclaurin polynomial for f at c .
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Example 3 (A Maclaurin polynomial for f (x) = ex)

Find the nth Maclaurin polynomial for f (x) = ex .

The nth Maclaurin polynomial for

f (x) = ex

is given by

Pn(x) = 1 + x +
1

2!
x2 +

1

3!
x3 + · · ·+ 1

n!
xn.

■

Example 4 (Finding Taylor polynomials for ln x)

Find the Taylor polynomials P0, P1, P2, P3, and P4, for ln x centered at
c = 1.
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Expanding about c = 1 yields the following.

f (x) = ln x f (1) = ln 1 = 0

f ′(x) =
1

x
f ′(1) =

1

1
= 1

f ′′(x) = − 1

x2
f ′′(1) = − 1

12
= −1

f ′′′(x) =
2!

x3
f ′′′(1) =

2!

13
= 2

f (4)(x) = − 3!

x4
f (4)(1) = − 3!

14
= −6

Therefore, the Taylor polynomials are as follows.

P0(x) = f (1) = 0

P1(x) = f (1) + f ′(1)(x − 1) = (x − 1)

P2(x) = f (1) + f ′(1)(x − 1) +
f ′′(1)

2!
(x − 1)2 = (x − 1)− 1

2
(x − 1)2
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and

P3(x) = f (1) + f ′(1)(x − 1) +
f ′′(1)

2!
(x − 1)2 +

f ′′′(1)

3!
(x − 1)3

= (x − 1)− 1

2
(x − 1)2 +

1

3
(x − 1)3

P4(x) = f (1) + f ′(1)(x − 1) +
f ′′(1)

2!
(x − 1)2

+
f ′′′(1)

3!
(x − 1)3 +

f (4)(1)

4!
(x − 1)4

= (x − 1)− 1

2
(x − 1)2 +

1

3
(x − 1)3 − 1

4
(x − 1)4

Figure 7 compares the graphs of P1, P2, P3, and P4 with the graph of
f (x) = ln x . Note that near x = 1 the graphs are nearly
indistinguishable. For instance, P4(1.1) ≈ 0.0953083 and
ln(1.1) ≈ 0.0953102. ■
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(a) n = 1 (b) 2

(c) n = 3 (d) n = 4

Figure 7: As n increases, the graph of Pn, becomes a better and better
approximation of the graph of f (x) = ln x near x = 1.
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Example 5 (Finding Maclaurin polynomials for cos x)

Find the Maclaurin polynomials P0, P2, P4, and P6 for f (x) = cos x . Use
P6(x) to approximate the value of cos(0.1).

Expanding about c = 0 yields the following.

f (x) = cos x f (0) = cos 0 = 1

f ′(x) = − sin x f ′(0) = − sin 0 = 0

f ′′(x) = − cos x f ′′(0) = − cos 0 = −1

f ′′′(x) = sin x f ′′′(0) = sin 0 = 0

Through repeated differentiation, you can see that the pattern 1, 0,
−1, 0 continues, and you obtain the following Maclaurin polynomials.

P0(x) = 1, P2(x) = 1− 1

2!
x2,

P4(x) = 1− 1

2!
x2 +

1

4!
x4, P6(x) = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6
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Using P6(x), you obtain the approximation cos(0.1) ≈ 0.995004165,
which coincides with the calculator value to nine decimal places.
Figure 8 compares the graphs of f (x) = cos x and P6. ■

Figure 8: Near (0, 1), the graph of P6 can be used to approximate the graph of
f (x) = cos x .
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Example 6 (Finding a Taylor polynomial for sin x)

Find the third Taylor polynomial for f (x) = sin x , expanded about
c = π/6.

Expanding about c = π/6 yields the following.

f (x) = sin x f
(π
6

)
= sin

π

6
=

1

2

f ′(x) = cos x f ′
(π
6

)
= cos

π

6
=

√
3

2

f ′′(x) = − sin x f ′′
(π
6

)
= − sin

π

6
= −1

2

f ′′′(x) = − cos x f ′′′
(π
6

)
= − cos

π

6
= −

√
3

2
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So, the third Taylor polynomial for f (x) = sin x , expanded about
c = π/6, is

P3(x) = f (π/6) + f ′(π/6)(x − π/6) +
f ′′(π/6)

2!
(x − π/6)2

+
f ′′′(π/6)

3!
(x − π/6)3

=
1

2
+

√
3

2
(x − π/6)− 1

2(2!)
(x − π/6)2 −

√
3

2(3!)
(x − π/6)3.

Figure 9 compares the graphs of f (x) = sin x and P3. ■

Figure 9: Near (π/6, 1/2), the graph of P3 can be used to approximate the graph
of f (x) = sin x .
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Example 7 (Approximation using Maclaurin polynomials)

Use a fourth Maclaurin polynomial to approximate the value of ln(1.1).

Because 1.1 is closer to 1 than to 0, you should consider Maclaurin
polynomials for the function g(x) = ln(1 + x).

g(x) = ln(1 + x) g(0) = ln(1 + 0) = 0

g ′(x) = (1 + x)−1 g ′(0) = (1 + 0)−1 = 1

g ′′(x) = −(1 + x)−2 g ′′(0) = −(1 + 0)−2 = −1

g ′′′(x) = 2(1 + x)−3 g ′′′(0) = 2(1 + 0)−3 = 2

g (4)(x) = −6(1 + x)−4 g (4)(0) = −6(1 + 0)−4 = −6

Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series January 28, 2022 109 / 159



Note that you obtain the same coefficients as in Example 4.
Therefore, the fourth Maclaurin polynomial for g(x) = ln(1 + x) is

P4(x) = g(0) + g ′(0)x +
g ′′(0)

2!
x2 +

g ′′′(0)

3!
x3 +

g (4)(0)

4!
x4

= x − 1

2
x2 +

1

3
x3 − 1

4
x4.

Consequently,

ln(1.1) = ln(1 + 0.1) ≈ P4(0.1) ≈ 0.0953083.

Check to see that the fourth Taylor polynomial (from Example 4),
evaluated at x = 1.1, yields the same result. ■
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Remainder of a Taylor polynomial

An approximation technique is of little value without some idea of its
accuracy.

To measure the accuracy of approximating a function value f (x) by
the Taylor polynomial Pn(x), you can use the concept of a remainder
Rn(x), defined as follows.

So, Rn(x) = f (x)− Pn(x). The absolute value of Rn(x) is called the
error associated with the approximation. That is,

Error = |Rn(x)| = |f (x)− Pn(x)|

The next theorem gives a general procedure for estimating the
remainder associated with a Taylor polynomial.
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This important theorem is called Taylor’s Theorem, and the remainder
given in the theorem is called the Lagrange form of the remainder.

Theorem 9.19 (Taylor’s Theorem)

If a function f is differentiable through order n + 1 in an interval I
containing c , then, for each x in I , there exists z between x and c such
that

f (x) = f (c)+ f ′(c)(x−c)+
f ′′(c)

2!
(x−c)2+ · · ·+ f (n)(c)

n!
(x−c)n+Rn(x)

where

Rn(x) =
f (n+1)(z)

(n + 1)!
(x − c)n+1.
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Example 8 (Determining the accuracy of an approximation)

The third Maclaurin polynomial for sin x is given by

P3(x) = x − x3

3!
.

Use Taylor’s Theorem to approximate sin(0.1) by P3(0.1) and determine
the accuracy of the approximation.

Using Taylor’s Theorem, you have

sin x = x − x3

3!
+ R3(x) = x − x3

3!
+

f (4)(z)

4!
x4

where 0 < z < 0.1.

Therefore,

sin(0.1) ≈ 0.1− (0.1)3

3!
≈ 0.1− 0.000167 = 0.099833.
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Because f (4)(z) = sin z , it follows that the error |R3(0.1)| can be
bounded as follows.

0 < R3(0.1) =
sin z

4!
(0.1)4 <

0.0001

4!
≈ 0.000004.

This implies that

0.099833 < sin(0.1) = 0.099833 + R3(x) < 0.099833 + 0.000004

0.099833 < sin(0.1) < 0.099837. ■
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Power series

An important function f (x) = ex can be represented exactly by an
infinite series called a power series. For example, the power series
representation for ex is

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · .

For each real number x , it can be shown that the infinite series on the
right converges to the number ex .

Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series January 28, 2022 116 / 159



Definition 9.7 (Power series)

If x is a variable, then an infinite series of the form

∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + · · ·+ anx

n + · · ·

is called a power series. More generally, an infinite series of the form

∞∑
n=0

an(x−c)n = a0+a1(x−c)+a2(x−c)2+a3(x−c)3+· · ·+an(x−c)n+· · ·

is called a power series centered at c , where c is a constant.
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Example 1 (Power series)

a. The following power series is centered at 0.

∞∑
n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · ·

b. The following power series is centered at −1.

∞∑
n=0

(−1)n(x + 1)n = 1− (x + 1) + (x + 1)2 − (x + 1)3 + · · ·

c. The following power series is centered at 1.

∞∑
n=1

1

n
(x − 1)n = (x − 1) +

1

2
(x − 1)2 +

1

3
(x − 1)3 + · · ·

■
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Radius and interval of convergence
A power series in x can be viewed as a function of x

f (x) =
∞∑
n=0

an(x − c)n

where the domain of f is the set of all x for which the it converges.

Theorem 9.20 (Convergence of a power series)
For a power series centered at c , precisely one of the following is true.

1. The series converges only at c .

2. There exists a real number R > 0 such that the series converges
absolutely for |x − c | < R, and diverges for |x − c | > R.

3. The series converges absolutely for all x .

The number R is the radius of convergence. If the series converges only at
c , the radius of convergence is R = 0, and if the series converges for all x ,
the radius of convergence is R = ∞. The set of all values of x for which it
converges is the interval of convergence of the power series.
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Example 2 (Finding the radius of convergence)

Find the radius of convergence of
∑∞

n=0 n!x
n.

For x = 0, you obtain

f (0) =
∞∑
n=0

n!0n = 1 + 0 + 0 + · · · = 1.

For any fixed value of x such that |x | > 0, let un = n!xn. Then

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣(n + 1)!xn+1

n!xn

∣∣∣∣ = |x | lim
n→∞

(n + 1) = ∞.

Therefore, by the Ratio Test, the series diverges for |x | > 0 and
converges only at its center, 0.

So, the radius of convergence is R = 0. ■
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Example 3 (Finding the radius of convergence)

Find the radius of convergence of
∑∞

n=0 3(x − 2)n.

For x ̸= 2, let un = 3(x − 2)n. Then

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣3(x − 2)n+1

3(x − 2)n

∣∣∣∣ = lim
n→∞

|x − 2| = |x − 2|.

By the Ratio Test, the series converges if |x − 2| < 1 and diverges if
|x − 2| > 1. Therefore, the radius of convergence of the series is
R = 1. ■

Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series January 28, 2022 121 / 159



Example 4 (Finding the radius of convergence)

Find the radius of convergence of
∑∞

n=0
(−1)nx2n+1

(2n+1)! .

Let un = (−1)nx2n+1/(2n + 1)!. Then

lim
n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣(−1)n+1x2n+3/(2n + 3)!

(−1)nx2n+1/(2n + 1)!

∣∣∣∣ = lim
n→∞

x2

(2n + 3)(2n + 2)
.

For any fixed value of x , this limit is 0. So, by the Ratio Test, the
series converges for all x . Therefore, the radius of convergence is
R = ∞. ■
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Differentiation and integration of power series

Theorem 9.21 (Properties of functions defined by power series)

If the function given by
f (x) =

∑∞
n=0 an(x − c)n = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + · · ·

has a radius of convergence of R > 0, then, on the interval
(c − R, c + R), f is differentiable (and therefore continuous).
Moreover, the derivative and antiderivative of f are as follows.
1. f ′(x) =

∑∞
n=1 nan(x − c)n−1 = a1 + 2a2(x − c) + 3a3(x − c)2 + · · ·

2.∫
f (x) dx = C+

∑∞
n=0 an

(x−c)n+1

n+1 = C+a0(x−c)+a1
(x−c)2

2 +a2
(x−c)3

3 +· · ·
The radius of convergence of the series obtained by differentiating or
integrating a power series is the same as that of the original power series.
The interval of convergence, however, may differ as a result of the
behavior at the endpoints.
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The interval of convergence of the series obtained by differentiating a
power series may get worse but cannot get improved. However, the
interval of convergence of the series obtained by integrating a power
series may get improve but cannot get worse.

Example 8 (Intervals of convergence for f (x), f ′(x), and
∫
f (x) dx)

Consider the function given by

f (x) =
∞∑
n=1

xn

n
= x +

x2

2
+

x3

3
+ · · · .

Find the interval of convergence for each of the following.
a.
∫
f (x) dx b. f (x) c. f ′(x)
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By Theorem 9.21, you have

f ′(x) =
∞∑
n=1

xn−1 = 1 + x + x2 + x3 + · · ·

and∫
f (x)dx = C +

∞∑
n=1

xn+1

n(n + 1)
= C +

x2

1 · 2
+

x3

2 · 3
+

x4

3 · 4
+ · · · .

By the Ratio Test, you can show that each series has a radius of
convergence of R = 1.

Considering the interval (−1, 1), you have the following.

a. For
∫
f (x)dx , the series

∞∑
n=1

xn+1

n(n + 1)
Interval of convergence: [−1, 1]

converges for x = ±1, and its interval of convergence is [−1, 1]. See
Figure 10.
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b. For f (x), the series

∞∑
n=1

xn

n
Interval of convergence: [−1, 1)

converges for x = −1, and diverges for x = 1.

So, its interval of convergence is [−1, 1). See Figure 10.

c. For f ′(x), the series

∞∑
n=1

xn−1 Interval of convergence: (−1, 1)

diverges for x = ±1, and its interval of convergence is (−1, 1). See
Figure 10. ■
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(a) Interval: [−1, 1]
and radius: R = 1.

(b) Interval: [−1, 1)
and radius: R = 1.

(c) Interval: (−1, 1)
and radius: R = 1.

Figure 10: Intervals of convergence for f (x), f ′(x), and
∫
f (x)dx .
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Geometric power series

Consider the function given by f (x) = 1/(1− x). The form of f
closely resembles the sum of a geometric series

∞∑
n=0

arn =
a

1− r
, |r | < 1.

In other words, if you let a = 1 and r = x , a power series
representation for 1/(1− x), centered at 0, is

1

1− x
=

∞∑
n=0

xn = 1 + x + x2 + x3 + · · · , |x | < 1.

Of course, this series represents f (x) = 1/(1− x) only on the interval
(−1, 1), whereas f is defined for all x ̸= 1, as shown in Figure 11.

To represent f in another interval, you must develop a different series.
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For instance, to obtain the power series centered at −1, you could
write

1

1− x
=

1

2− (x + 1)
=

1/2

1− [(x + 1)/2]
=

a

1− r

which implies that a = 1/2 and r = (x + 1)/2.

So, for |x + 1| < 2, you have

1

1− x
=

∞∑
n=0

(
1

2

)(
x + 1

2

)n

=
1

2

[
1 +

(x + 1)

2
+

(x + 1)2

4
+

(x + 1)3

8
+ · · ·

]
, |x + 1| < 2

which converges on the interval (−3, 1).
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Figure 11: Definition of different ranges with function.
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Example 1 (Finding a geometric power series centered at 0)

Find a power series for f (x) = 4/(x + 2) centered at 0.

Writing f (x) in the form a/(1− r) produces

4

2 + x
=

2

1− (−x/2)
=

a

1− r

which implies that a = 2 and r = −x/2.

So, the power series for f (x) is

4

x + 2
=

∞∑
n=0

arn =
∞∑
n=0

2
(
−x

2

)n
= 2

(
1− x

2
+

x2

4
− x3

8
+ · · ·

)
.

This power series converges when∣∣∣−x

2

∣∣∣ < 1

which implies that the interval of convergence is (−2, 2). ■
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Example 2 (Finding a geometric power series centered at 1)

Find a power series for f (x) = 1/x , centered at 1.

Writing f (x) in the form a/(1− r) produces

1

x
=

1

1− (−x + 1)
=

a

1− r

which implies that a = 1 and r = 1− x = −(x − 1). So, the power
series for f (x) is

1

x
=

∞∑
n=0

arn =
∞∑
n=0

[−(x − 1)]n

=
∞∑
n=0

(−1)n(x − 1)n = 1− (x − 1) + (x − 1)2 − (x − 1)3 + · · · .

This power series converges when |x − 1| < 1 which implies that the
interval of convergence is (0, 2). ■
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Operations with power series

Operations with power series Let f (x) =
∑

anx
n and g(x) =

∑
bnx

n.
1. f (kx) =

∑∞
n=0 ank

nxn

2. f (xN) =
∑∞

n=0 anx
nN

3. f (x)± g(x) =
∑∞

n=0(an ± bn)x
n

Example 3 (Adding two power series)

Find a power series, centered at 0, for f (x) = (3x − 1)/(x2 − 1).

Using partial fractions, you can write f (x) as

3x − 1

x2 − 1
=

2

x + 1
+

1

x − 1
.
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By adding the two geometric power series

2

x + 1
=

2

1− (−x)
=

∞∑
n=0

2(−1)nxn, |x | < 1

and
1

x − 1
=

−1

1− x
= −

∞∑
n=0

xn, |x | < 1

you obtain the following power series.

3x − 1

x2 − 1
=

∞∑
n=0

[2(−1)n − 1]xn = 1− 3x + x2 − 3x3 + x4 − · · ·

The interval of convergence for this power series is (−1, 1). ■

Example 4 (Finding a power series by integration)

Find a power series for f (x) = ln x , centered at 1.
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From Example 2, you know that

1

x
=

∞∑
n=0

(−1)n(x − 1)n. Interval of convergence: (0, 2)

Integrating this series produces

ln x =

∫
1

x
dx + C = C +

∞∑
n=0

(−1)n
(x − 1)n+1

n + 1
.

By letting x = 1, you can conclude that C = 0. Therefore,

ln x =
∞∑
n=0

(−1)n
(x − 1)n+1

n + 1

=
(x − 1)

1
− (x − 1)2

2
+

(x − 1)3

3
− (x − 1)4

4
+ · · · .

Interval of convergence: (0, 2]
Note that the series converges at x = 2. This is consistent with the
observation in the preceding section that integration of a power series
may alter the convergence at the endpoints of the interval of
convergence. ■
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Taylor series and Maclaurin series

The development of power series to represent functions is credited to
the combined work of many seventeenth and eighteenth century
mathematicians.

Gregory, Newton, John and James Bernoulli, Leibniz, Euler, Lagrange,
Wallis, and Fourier all contributed to this work.

However, the two names that are most commonly associated with
power series are Brook Taylor and Colin Maclaurin.

Theorem 9.22 (The form of a convergent power series)

If f is represented by a power series f (x) =
∑

an(x − c)n for all x in an
open interval I containing c , then an = f (n)(c)/n! and

f (x) = f (c)+ f ′(c)(x − c)+
f ′′(c)

2!
(x − c)2+ · · ·+ f (n)(c)

n!
(x − c)n + · · · .
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The coefficients of the power series in Theorem 9.22 are precisely the
coefficients of the Taylor polynomials for f (x) at c . For this reason,
the series is called the Taylor series for f (x) at c .

Definition 9.8 (Taylor and Maclaurin series)

If a function f has derivatives of all orders at x = c, then the series

∞∑
n=0

f (n)(c)

n!
(x − c)n = f (c) + f ′(c)(x − c) + · · ·+ f (n)(c)

n!
(x − c)n + · · ·

is called the Taylor series for f (x) at c . Moreover, if c = 0, then the series
is the Maclaurin series for f .
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Example 1 (Forming a power series)

Use the function f (x) = sin x to form the Maclaurin series

∞∑
n=0

f (n)(0)

n!
xn = f (0) + f ′(0)x +

f ′′(0)

2!
x +

f (3)(0)

3!
x3 +

f (4)(0)

4!
x4 + · · ·

and determine the interval of convergence.

Successive differentiation of f (x) yields

f (x) = sin x f (0) = sin 0 = 0

f ′(x) = cos x f ′(0) = cos 0 = 1

f ′′(x) = − sin x f ′′(0) = − sin 0 = 0

f (3)(x) = − cos x f (3)(0) = − cos 0 = −1

f (4)(x) = sin x f (4)(0) = sin 0 = 0

f (5)(x) = cos x f (5)(0) = cos 0 = 1

and so on.
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The pattern repeats after the third derivative. So, the power series is
as follows.

∞∑
n=0

f (n)(0)

n!
xn = f (0) + f ′(0)x +

f ′′(0)

2!
x +

f (3)(0)

3!
x3

+
f (4)(0)

4!
x4 + · · ·

∞∑
n=0

(−1)nx2n+1

(2n + 1)!
= 0 + (1)x +

0

2!
x2 +

(−1)

3!
x3 +

0

4!
x4 +

1

5!
x5 +

0

6!
x6

+
(−1)

7!
x7 + · · · = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

By the Ratio Test, you can conclude that this series converges for all
x . ■
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You cannot conclude that the power series converges to sin x for all x .
You can simply conclude that the power series converges to some
function, but you are not sure what function it is.

This is a subtle, but important, point in dealing with Taylor or
Maclaurin series.

To persuade yourself that the series

f (c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n + · · ·

might converge to a function other than f , remember that the
derivatives are being evaluated at a single point.

It can easily happen that another function will agree with the values
of f (n)(x) when x = c and disagree at other x-values.

If you formed the power series for the function shown in Figure 12,
you would obtain the same series as in Example 1.

You know that the series converges for all x , and yet it obviously
cannot converge to both f (x) and sin x for all x .
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Figure 12: f (x) ̸= sin x for all x but both have the same Taylor series.

Let f have derivatives of all orders in an open interval I centered at c.

The Taylor series for f may fail to converge for some x in I . Or, even
if it is convergent, it may fail to have f (x) as its sum.
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Nevertheless, Theorem 9.19 tells us that for each n,

f (x) = f (c)+f ′(c)(x−c)+
f ′′(c)

2!
(x−c)2+· · ·+ f (n)(c)

n!
(x−c)n+Rn(x)

where

Rn(x) =
f (n+1)(z)

(n + 1)!
(x − c)n+1.

Theorem 9.23 (Convergence of Taylor series)

If limn→∞ Rn = 0 for all x in the interval I , then the Taylor series for f
converges and equals f (x),

f (x) =
∞∑
n=0

f (n)(c)

n!
(x − c)n.
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Example 2 (A convergent Maclaurin series)

Show that the Maclaurin series for f (x) = sin x converges to sin x for all x .

You need to show that

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·+ (−1)nx2n+1

(2n + 1)!
+ · · ·

is true for all x .

Because

f (n+1)(x) = ± sin x or f (n+1)(x) = ± cos x

you know that |f (n+1)(z)| ≤ 1 for every real number z .

Therefore, for any fixed x , you can apply Taylor’s Theorem
(Theorem 9.19) to conclude that

0 ≤ |Rn(x)| ≤

∣∣∣∣∣ f (n+1)(z)

(n + 1)!
xn+1

∣∣∣∣∣ ≤ |x |n+1

(n + 1)!
.
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The relative rates of convergence of exponential and factorial
sequences, it follows that for a fixed x

lim
n→∞

|x |n+1

(n + 1)!
= 0.

Finally, by the Squeeze Theorem, it follows that for all x , Rn(x) → 0
as n → ∞.

So, by Theorem 9.23, the Maclaurin series for sin x converges to sin x
for all x . ■

Figure 13 visually illustrates the convergence of the Maclaurin series
for sin x by comparing the graphs of the Maclaurin polynomials
P1(x), P3(x), P5(x), and P7(x) with the graph of the sine function.
Notice that as the degree of the polynomial increases, its graph more
closely resembles that of the sine function.
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(a) n = 1. (b) n = 3.

(c) n = 5. (d) n = 7.

Figure 13: As n increases, the graph of Pn more closely resembles the sine
function.
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Guidelines for finding a Taylor series

1 Differentiate f (x) several times and evaluate each derivative at c.

f (c), f ′(c), f ′′(c), f ′′′(c), . . . , f (n)(c), . . .

Try to recognize a pattern in these numbers.

2 Use the sequence developed in the first step to form the Taylor
coefficients an = f (n)(c)/n!, and determine the interval of
convergence for the resulting power series

f (c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n + · · · .

3 Within this interval of convergence, determine whether or not the
series converges to f (x).

Szu-Chi Chung (NSYSU) Chapter 9 Infinite Series January 28, 2022 148 / 159



Example 3 (Maclaurin series for a composite function)

Find the Maclaurin series for f (x) = sin x2.

To find the coefficients for this Maclaurin series directly, you must
calculate successive derivatives of f (x) = sin x2.

By calculating just the first two,

f ′(x) = 2x cos x2 and f ′′(x) = −4x2 sin x2 + 2 cos x2

you can see that this task would be quite cumbersome.

Fortunately, there is an alternative. First consider the Maclaurin series
for sin x found in Example 1.

g(x) = sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

Now, because sin x2 = g(x2), you can substitute x2 for x in the series
for sin x to obtain

sin x2 = g(x2) = x2 − x6

3!
+

x10

5!
− x14

7!
+ · · · . ■
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Binomial series

Before presenting the basic list for elementary functions, you will
develop one more series—for a function of the form f (x) = (1 + x)k .

Example 4 (Binomial series)

Find the Maclaurin series for f (x) = (1 + x)k and determine its radius of
convergence. Assume that k is not a positive integer.

By successive differentiation, you have

f (x) = (1 + x)k f (0) = 1

f ′(x) = k(1 + x)k−1 f ′(0) = k

f ′′(x) = k(k − 1)(1 + x)k−2 f ′′(0) = k(k − 1)

f ′′′(x) = k(k − 1)(k − 2)(1 + x)k−3 f ′′′(0) = k(k − 1)(k − 2)

...
...

f (n)(x) = k · · · (k − n + 1)(1 + x)k−n f (n) = k(k − 1) · · · (k − n + 1)
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which produces the series

1 + kx +
k(k − 1)x2

2
+ · · ·+ k(k − 1) · · · (k − n + 1)xn

n!
+ · · · .

Because an+1/an → 1, you can apply the Ratio Test to conclude that
the radius of convergence is R = 1.
So, the series converges to some function in the interval (−1, 1). ■

Example 5 (Finding a binomial series)

Find the Maclaurin series for f (x) = 3
√
1 + x .

Using the binomial series

(1+x)k =
∞∑
n=0

(
k

n

)
xn = 1+kx+

k(k − 1)x2

2!
+
k(k − 1)(k − 2)x3

3!
+· · ·

let k = 1/3 and write

(1 + x)1/3 =
∞∑
n=0

(
1/3

n

)
xn = 1 +

x

3
− 2x2

322!
+

2 · 5x3

333!
− 2 · 5 · 8x4

344!
+ · · ·

which converges for −1 ≤ x ≤ 1. ■
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Figure 14: f (x) = 3
√
1 + x and P4(x) on [−2, 2].
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Deriving Taylor series from a basic list

Function Interval of convergence
1

x
= 1 − (x − 1) + (x − 1)2 − (x − 1)3 + (x − 1)4 − · · · + (−1)n(x − 1)n + · · · 0 < x < 2

1

1 + x
= 1 − x + x2 − x3 + x4 − x5 + · · · + (−1)nxn + · · · − 1 < x < 1

ln x = (x − 1) −
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
+ · · · +

(−1)(n−1)(x − 1)n

n
+ · · · 0 < x ≤ 2

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ · · · +

xn

n!
+ · · · − ∞ < x < ∞

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+

x9

9!
− · · · +

(−1)nx2n+1

(2n + 1)!
+ · · · − ∞ < x < ∞

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− · · · +

(−1)nx2n

(2n)!
+ · · · − ∞ < x < ∞

arctan x = x −
x3

3
+

x5

5
−

x7

7
+

x9

9
− · · · +

(−1)nx2n+1

2n + 1
+ · · · − 1 ≤ x ≤ 1

arcsin x = x +
x3

2 · 3
+

1 · 3x5

2 · 4 · 5
+

1 · 3 · 5x7

2 · 4 · 6 · 7
+ · · · +

(2n)!x2n+1

(2nn!)2(2n + 1)
+ · · · − 1 ≤ x ≤ 1

(1 + x)k = 1 + kx +
k(k − 1)x2

2!
+

k(k − 1)(k − 2)x3

3!
+

k(k − 1)(k − 2)(k − 3)x4

4!
+ · · · − 1 < x < 1

The conevrgence at x = ±1 depends on the value of k.
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Euler’s Formula

e ix = cos x + i sin x =
∞∑
n=0

(ix)n

n!

=
∞∑
n=0

(−1)n
x2n

(2n)!
+ i

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!

Example 6 (Deriving a power series from a basic list)

Find the power series for f (x) = cos
√
x .

Using the power series

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

you can replace x by
√
x to obtain the series

cos
√
x = 1− x

2!
+

x2

4!
− x3

6!
+

x4

8!
− · · · .
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This series converges for all x in domain of cos
√
x—that is, for

x ≥ 0. ■

Example 7 (Multiplication and division of power series)

Find the first three nonzero terms in each Maclaurin series ex arctan x .

Using the Maclaurin series for ex and arctan x in the table, you have

ex arctan x =

(
1 +

x

1!
+

x2

2!
+

x3

3!
+

x4

4!
+ · · ·

)(
x − x3

3
+

x5

5
− · · ·

)
.

Multiply these expressions and collect like terms as you would in
multiplying polynomials.

1 + x + 1
2 x

2 + 1
6 x

3 + 1
24 x

4 + · · ·
x − 1

3 x
3 + 1

5 x
5 − · · ·

x + x2 + 1
2 x

3 + 1
6 x

4 + 1
24 x

5 + · · ·
− 1

3 x
3 − 1

3 x
4 − 1

6 x
5 − · · ·

+ 1
5 x

5 + · · ·
x + x2 + 1

6 x
3 − 1

6 x
4 + 3

40 x
5 + · · ·

So, ex arctan x = x + x2 + 1
6 x

3 + · · · . ■
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Example 8 (Division of Power Series)

Find the first three nonzero terms in each Maclaurin series tan x .

Using the Maclaurin series for sin x and cos x in the table, you have

tan x =
sin x

cos x
=

x − x3

3! +
x5

5! − · · ·
1− x2

2! +
x4

4! − · · ·
.

Divide using long division.

So, tan x = x + 1
3 x

3 + 2
15 x

5 + · · · . ■
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Example 9 (A power series for sin2 x)

Find the power series for f (x) = sin2 x .

Consider rewriting sin2 x as follows.

sin2 x =
1− cos 2x

2
=

1

2
− cos 2x

2

Now, use the series for cos x .

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

cos 2x = 1− 22

2!
x2 +

24

4!
x4 − 26

6!
x6 +

28

8!
x8 − · · ·

−1

2
cos 2x = −1

2
+

2

2!
x2 − 23

4!
x4 +

25

6!
x6 − 27

8!
x8 + · · ·

sin2 x =
1

2
− 1

2
cos 2x =

1

2
− 1

2
+

2

2!
x2 − 23

4!
x4 +

25

6!
x6 − 27

8!
x8 + · · ·

=
2

2!
x2 − 23

4!
x4 +

25

6!
x6 − 27

8!
x8 + · · ·
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This series converges for −∞ < x < ∞. ■

Example 10 (Power series approximation of a definite integral)

Use a power series to approximate∫ 1

0
e−x2 dx

with an error of less than 0.01.

Replacing x with −x2 in the series for ex produces the following.

e−x2 = 1− x2 +
x4

2!
− x6

3!
+

x8

4!
− · · ·∫ 1

0
e−x2 dx =

[
x − x3

3
+

x5

5 · 2!
− x7

7 · 3!
+

x9

9 · 4!
− · · ·

]1
0

= 1− 1

3
+

1

10
− 1

42
+

1

216
− · · ·
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Summing the first four terms, you have∫ 1

0
e−x2 dx ≈ 0.74

which, by the Alternating Series Test, has an error of less than
1/216 ≈ 0.005. ■
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